Backlighting LEDs in ø 3 mm Tinted Non Diffused Package

Color	Туре	Technology	Angle of half intensity $\pm \phi$		
Soft orange	TLVS4200	GaAsP on GaP	85°		
Pure green	TLVP4200	GaP on GaP	83		

Description

The TLVS4200 and TLVP4200 series was developed for backlighting. Due to its special shape the spatial distribution of the radiation is qualified for backlighting.

To optimize the brightness of backlighting a custom–built reflector (with scattering) is required. Uniform illumination can be enhanced by covering the front of the reflector with diffusor material.

This is a flexible solution for backlighting different areas.

Features

- High brightness
- Wide viewing angle
- Categorized for luminous flux
- Available in soft orange and pure green
- Tinted clear package
- Low power dissipation
- Low self heating
- Rugged design
- High reliability

Applications

Backlighting of display panels, LCD displays, symbols on switches, keyboards, graphic boards and measuring scales Illumination of large areas e.g. dot matrix displays

TLVS42../TLVP42..

Absolute Maximum Ratings

 $T_{amb} = 25^{\circ}C$, unless otherwise specified

TLVS4200 ,TLVP4200

Parameter	Test Conditions	Туре	Symbol	Value	Unit
Reverse voltage			V _R	6	V
DC forward current			I _F	30	mA
Surge forward current	$t_p \leq 10 \ \mu s$		I _{FSM}	1	А
Power dissipation	$T_{amb} \leq 30^{\circ}C$		P _V	100	mW
Junction temperature			T _i	100	°C
Operating temperature range			T _{amb}	-20 to +100	°C
Storage temperature range			T _{stg}	-55 to +100	°C
Soldering temperature	$t \leq 5 s$,		T _{sd}	260	°C
	2 mm from body				
Thermal resistance junction/ambient			R _{thJA}	700	K/W

Optical and Electrical Characteristics

 $T_{amb} = 25^{\circ}C$, unless otherwise specified

Soft orange (TLVS4200)

Parameter	Test Conditions	Туре	Symbol	Min	Тур	Max	Unit
Luminous flux	$I_F = 15 \text{ mA}$		ϕ_V	10	25		mlm
Dominant wavelength	$I_F = 10 \text{ mA}$		λ_d	598		611	nm
Peak wavelength	$I_F = 10 \text{ mA}$		λ _p		605		nm
Angle of half intensity	$I_F = 10 \text{ mA}$		φ		±85		deg
Forward voltage	$I_F = 20 \text{ mA}$		V _F		2	3	V
Reverse voltage	$I_R = 10 \ \mu A$		VR	6	15		V
Junction capacitance	$V_R = 0, f = 1 MHz$		Ci		50		pF

Pure green (TLVP4200)

Parameter	Test Conditions	Туре	Symbol	Min	Тур	Max	Unit
Luminous flux	$I_F = 15 \text{ mA}$		φv	4	10		mlm
Dominant wavelength	$I_F = 10 \text{ mA}$		λ_d	555		565	nm
Peak wavelength	$I_F = 10 \text{ mA}$		λ _p		555		nm
Angle of half intensity	$I_F = 10 \text{ mA}$		φ		±85		deg
Forward voltage	$I_F = 20 \text{ mA}$		V _F		2.4	3	V
Reverse voltage	$I_R = 10 \ \mu A$		VR	6	15		V
Junction capacitance	$V_R = 0, f = 1 MHz$		Ci		50		pF

Typical Characteristics ($T_{amb} = 25^{\circ}C$, unless otherwise specified)

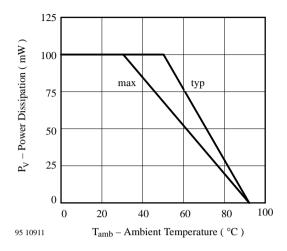


Figure 1. Power Dissipation vs. Ambient Temperature

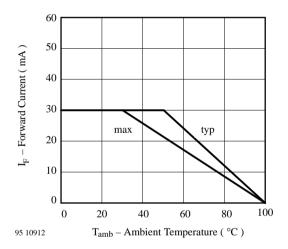


Figure 2. Forward Current vs. Ambient Temperature

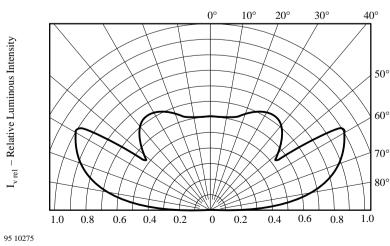


Figure 4. Rel. Luminous Intensity vs. Angular Displacement

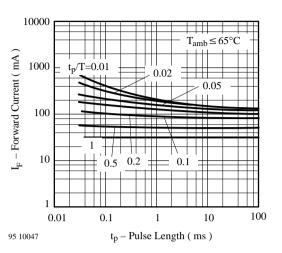


Figure 3. Forward Current vs. Pulse Length

TLVS42../TLVP42..

TELEFUNKEN Semiconductors

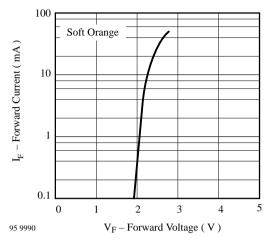


Figure 5. Forward Current vs. Forward Voltage

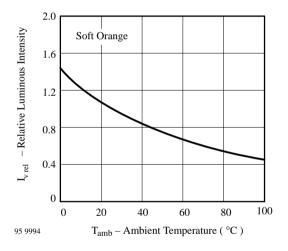


Figure 6. Rel. Luminous Intensity vs. Ambient Temperature

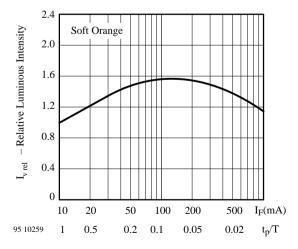


Figure 7. Rel. Lumin. Intensity vs. Forw. Current/Duty Cycle

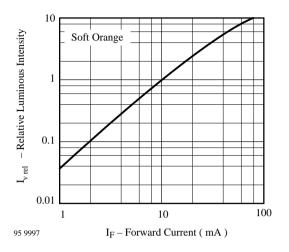


Figure 8. Relative Luminous Intensity vs. Forward Current

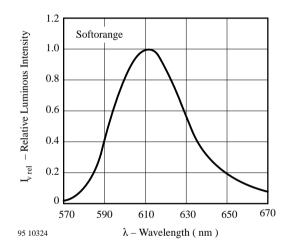


Figure 9. Relative Luminous Intensity vs. Wavelength

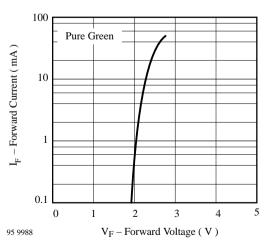


Figure 10. Forward Current vs. Forward Voltage

TEMIC **TELEFUNKEN Semiconductors**

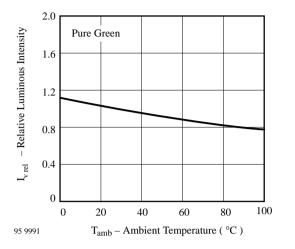


Figure 11. Rel. Luminous Intensity vs. Ambient Temperature

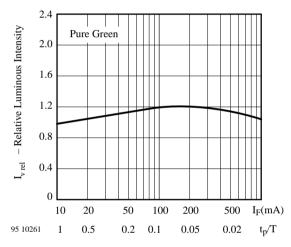
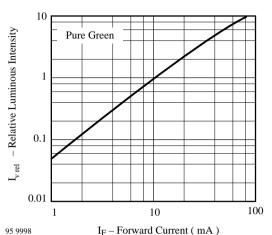



Figure 12. Rel. Lumin. Intensity vs. Forw. Current/Duty Cycle

TLVS42../TLVP42..

 I_F – Forward Current (mA)

Figure 13. Relative Luminous Intensity vs. Forward Current

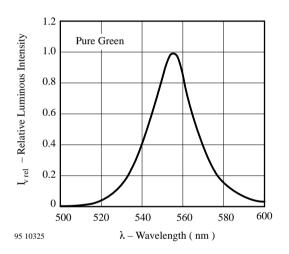
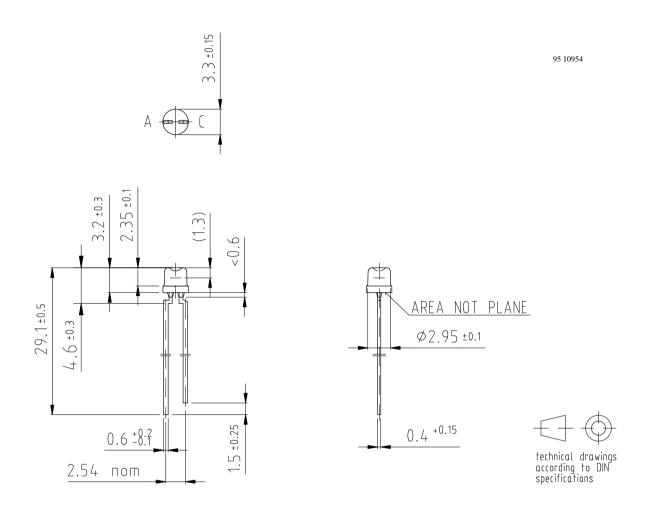



Figure 14. Relative Luminous Intensity vs. Wavelength

Dimensions in mm

Ozone Depleting Substances Policy Statement

It is the policy of TEMIC TELEFUNKEN microelectronic GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

TEMIC TELEFUNKEN microelectronic GmbH semiconductor division has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

TEMIC can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

TEMIC TELEFUNKEN microelectronic GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423